In the context of global warming, vegetation activity in northeastern East Asia (40–45°N, 105–130°E) (NEA) shows a significant growth trend on a multidecadal scale, but how vegetation changes on a decadal scale is unclear. In this study, we find a significant trend of vegetation greening in northeastern East Asia during 1982–1998 and a slowdown in the greening trend during 1998–2014. Trend analysis of the extreme climate indices reveals that the trends of precipitation-related extreme climate indices are similar to those of vegetation change, and further correlation analysis reveals that precipitation-related extreme climate indices have a strong positive correlation with the NDVI. The results indicate that the vegetation in northeastern East Asia is more sensitive to precipitation changes, especially extreme precipitation, compared with the temperature and related extreme indices. Furthermore, the analysis of large-scale atmospheric circulation changes suggests a role of Northwest Pacific subtropical high (NPSH) in the trend changes of precipitation-related extreme indices. The strengthening of NPSH before 1998 enhances the moisture transport to the NEA, providing abundant water vapor favorable for extreme precipitation events, while after 1998, the NPSH trend is much weakened, corresponding to a decrease in the moisture transport trend.