The overdone growth, wide availability, and demands for remote sensing databases combined with human limits to analyze such huge datasets lead to a need to investigate tools, techniques, methodologies, and theories capable of assisting humans at extracting knowledge. Image mining arises as a solution to extract implicit knowledge intelligently and semiautomatically or other patterns not explicitly stored in the huge image databases. However, spatial databases are among the ones with the fastest growth due to the volume of spatial information produced many times a day, demanding the investigation of other means for knowledge extraction. Multiagent systems are composed of multiple computing elements known as agents that interact to pursuit their goals. Agents have been used to explore information in the distributed, open, large, and heterogeneous platforms. Agent mining is a potential technology that studies ways of interaction and integration between data mining and agents. This area brought advances to the technologies involved such as theories, methodologies, and solutions to solve relevant issues more precisely, accurately and faster. AgentGeo is evidence of this, a multiagent system of satellite image mining that, promotes advances in the state of the art of agent mining, since it relevant functions to extract knowledge from spatial databases.