Metal-organic frameworks (MOFs) are porous materials composed of metal ions, clusters and organic ligands. Due to their outstanding chemical, thermal, and solvent stability, as well as numerous unsaturated metal sites, they have proven to be useful catalysts. In this study, MOFs were synthesized using hydrothermal methods with terephthalic acid and Ca, Mg, Al, and Cr nitrates. Subsequently, the MOFs were functionalized with diethylamine. The formation of MOF-Al and MOF-Cr structures was confirmed through characterization by XRD, FT-IR, and CHN analyses, while MOF-Ca and MOF-Mg could not be detected. SEM images revealed the particle size and morphology of the particles, which ranged between 0.2 and 1 mm. TGA/DTA curves revealed that the functionalized MOFs were the most thermally stable. Textural analysis by N2 adsorption/desorption showed that MOF-Cr and MOF-Cr-NH2 had high BET area values of 1,769.67 and 998.22 m2g− 1, respectively. The MOFs were employed as catalysts in Knoevenagel condensation reactions to synthesize (E)-ethyl 2-cyano-3-phenylacrylate and (E)-methyl 2-cyano-3-phenylacrylate, indicating their potential for reactions requiring acidic or basic sites.