This research evaluates the use of organoclay/alginate hydrogels in removing Acid Yellow 23 in a fixed-bed column and contributes to the application of these composites in the context of the adsorption of anionic dyes that are present in wastewater. An organobentonite (OBent) was synthesized and encapsulated in an alginate matrix, using Ca2+ ions as a crosslinking agent. Experiments in fixed-bed columns showed that breakthrough and exhaustion times were longer with increasing bed height, which decreased with increases in flow rate and initial dye concentration. The Thomas, Yoon–Nelson, and Adams–Bohart models were well fitted to the experimental data for the breakthrough curves with high Adj. R2 correlation coefficients and low values of χ2. The theoretical adsorption capacity of the organobentonite/alginate hydrogel calculated from the Thomas model was 0.50 ± 0.01 mg/g (equivalent to 30.97 mg/g OBent), and this was obtained by using a 15 cm (10.10 g) bed height, 1 mL/min flow rate, and a 45 mg/L input dye concentration. The bed was regenerated with a 0.5 M NaOH solution, and the reuse of the saturated column bed was studied for two adsorption–desorption cycles. The results obtained in this study suggest the potential use of an organoclay/alginate hydrogel for the adsorption of pollutants in continuous systems.