For this study, we applied activated biochar (AB) and its composition with magnetite (AB-Fe3O4) as adsorbents for the removal of polychlorophenols in model wastewater. We comprehensively characterized these adsorbents and performed adsorption tests under several experimental parameters. Using FTIR, we confirmed successful synthesis of AB-Fe3O4 composite through cetrimonium bromide surfactant. We conducted adsorption tests using AB and AB-Fe3O4 to treat model wastewater containing polychlorophenols, such as 2,3,4,6-Tetrachlorophenol (TeCP), 2,4,6-Trichlorophenol (TCP), and 2,4-Dichlorophenol (DCP). Results of the isotherm and the kinetic experiments were well adapted to Freundlich’s isotherm model and the pseudo-second-order kinetic model, respectively. Main adsorption mechanisms in this study were attributed to non-covalent, π-electron acceptor–donor interactions and hydrophobic interactions judging from the number of chloride elements in each chlorophenol and its hydrophobic characteristics. We also considered the electrostatic repulsion effect between TeCP and AB, because adsorption performance of TeCP at basic condition was slightly worse than at weak acidic condition. Lastly, AB-Fe3O4 showed high adsorption selectivity of TeCP compared to other persistent organic pollutants (i.e., bisphenol A and sulfamethoxazole) due to hydrophobic interactions. We concluded that AB-Fe3O4 may be used as novel adsorbent for wastewater treatment including toxic and hydrophobic organic pollutants (e.g., TeCP).