High concentrations of fluoride in drinking water is a public health concern globally and of critical importance in the Rift Valley region. As a low-cost water treatment option, the defluoridation capacity of locally available iron ore was investigated. Residence time, pH, agitation rate, particle size of the adsorbent, sorbent dose, initial fluoride concentration and the effect of co-existing anions were assessed. The sorption kinetics was found to follow pseudo-first-order rate and the experimental equilibrium sorption data fitted reasonably well to the Freundlich model. The sorption capacity of iron ore for fluoride was 1.72 mg/g and the equilibrium was attained after 120 min at the optimum pH of 6. The sorption study was also carried out at natural pH conditions using natural ground water samples and the fluoride level was reduced from 14.22 to 1.17 mg/L (below the WHO maximum permissible limit). Overall, we concluded that iron ore can be used in water treatment for fluoride removal in the Rift Valley region and beyond.