In this study, Trapa bispinosa's peel (TBP) biomass is exploited as an effective, low cost and new adsorbent to remove Pb(II) from aqueous solution. TBP is pretreated and modified with HNO3, HClO4 and H2O2 to enhance the Pb(II) removal and it is perceived that chemical modifications enhance the adsorption capacity of TBP. The adsorption behavior of Pb(II) is studied under different conditions, including pH (3-6), TBP dose (0.050.8 g), stirring speed (100-200 rpm), initial Pb(II) ion concentration (25-400 mg L-1) and contact time (0-1440 min). Kinetic study reveals sorption is fast in first 15 to 30 min achieving equilibrium in 60 min with qmax (mg g-1) are 77.09, 105.40 and 123.82 for NT-TBP, NA-TBP and HCA-TBP respectively. The Langmuir model successfully defines the sorption data having higher R2 and good agreement between theoretical and experimental uptake capacity of Pb(II). The kinetic study exhibits that the pseudo-second order rate equation is better portrayed sorption process. TBP modified with HClO4 shows the highest metal uptake in comparison to HNO3, H2O2 modified TBP and native TBP.