Heavy metals are a threat to human health and ecosystem. These days, great deal of attention is being given to green technologies for purification of water contaminated with heavy metal ions. Biosorption is one among such emerging technologies, which utilizes naturally occurring waste materials to sequester heavy metals from wastewater. Cadmium has hazardous impact on living beings; therefore, its removal through green and economical process is an important task. The aim of the present study was to utilize the locally available Portulaca oleracea plant biomass as an adsorbent for cadmium removal from aqueous solution. The biomass was obtained after drying and grinding the portulaca leaves and stem. No chemical treatment was done on the adsorbent so that it remained green in a true sense. Batch experiments were performed at room temperature. The critical parameters studied were effects of pH, contact time, initial metal ion concentration and adsorbent dose on the adsorption of cadmium. The maximum adsorption was found to be 72 %. The kinetic data were found to best fit the pseudo-secondorder equation. High adsorption rates were obtained in the initial 45 min, and adsorption equilibrium was then gradually achieved in about 100 min. Adsorption increased with increase in pH for a range 2 and 6. The equilibrium adsorption results closely followed both the Langmuir and Freundlich isotherms. The values of constants were calculated from isotherms. Results indicated that portulaca plant biomass could be developed as a potential material to be used in green water treatment devices for removal of metal ions.