Medial arterial calcification (MAC) is a major complication of chronic kidney disease (CKD) and an indicator of poor prognosis. Aortic overexpression of tissue-nonspecific alkaline phosphatase (TNAP) accelerates MAC formation.The present study aimed to assess whether a TNAP inhibitor, SBI-425, protects against MAC and improves survival probability in a CKD-mineral and bone disorder (MBD) mouse model. CKD-MBD mice were divided in three groups: vehicle, SBI-10, and SBI-30. They were fed a 0.2% adenine and 0.8% phosphorus diet from 14 to 20 weeks of age to induce CKD, followed by a high-phosphorus (0.2% adenine and 1.8% phosphorus) diet for another 6 weeks. At 14-20 weeks of age, mice in the SBI-10 and SBI-30 groups were given 10 and 30 mg/kg SBI-425 by gavage once a day, respectively, while vehicle-group mice were given distilled water as vehicle. Control mice were fed a standard chow (0.8% phosphorus) between the ages of 8 and 20 weeks. Computed tomography imaging, histology, and aortic tissue calcium content revealed that, compared to vehicle animals, SBI-425 nearly halted the formation of MAC. Mice in the control, SBI-10 and SBI-30 groups exhibited 100% survival, which was significantly better than vehicle-treated mice (57.1%). Aortic mRNA expression of Alpl, encoding TNAP, as well as plasma and aortic tissue TNAP activity, were suppressed by SBI-425 administration, whereas plasma pyrophosphate increased. We conclude that a TNAP inhibitor successfully protected the vasculature from MAC and improved survival rate in a mouse CKD-MBD model, without causing any adverse effects on normal skeletal formation and residual renal function.