This study explores the use of electrostatic cleaning to remove dust from the surface of photovoltaic solar panels. First of all, existing systems used for dust removal from solar panels were evaluated. Then, the effects of dust on the panel were investigated for Şanlıurfa province in Turkey. In addition, the elemental content of the powder was analyzed. A new device for electrostatic cleaning has been designed and implemented. The cleaning performance of this device has been tested considering the electrode designs. The electric field value was determined by analytical and numerical methods in the conventional model (parallel electrode) model. Electric field distribution was investigated using Ansys Maxwell simulation software. The printed circuit boards of the proposed model and the conventional model were produced. The traditional model with positive and negative waveform is widely used in electrostatic cleaner studies. Dust removal efficiencies and electrical losses for different frequency and voltage values were compared for both cards. It has been shown that the proposed model can perform cleaning with high efficiency despite similar loss variation.