SummaryNormal turnover of T lymphocytes is slow relative to other blood cells. Consequently, the physical removal of circulating leucocytes by thoracic duct drainage, repeated leukapheresis or blood filtration results in T cell depletion and immunosuppression. However, clinical use of such procedures is impractical compared with immunosuppressive drugs or radiation. None the less, immunosuppression by physical depletion of T cells, avoiding the systemic toxicities of drugs and radiation, might have clinical advantages if immunophenotypically distinct T cell subsets could be depleted selectively. Recent advances in targeted plasma protein apheresis using adsorbent macrobead columns prompted us to determine whether analogous techniques might permit CD4+ T lymphocytes to be removed selectively from whole blood. To explore this possibility, we linked murine anti-human-CD4 and isotypeidentical control monoclonal antibodies (mAbs) to agarose, polyacrylamide and polystyrene macrobeads (150-350 mm) and then evaluated the selectivity, specificity and efficiency of macrobead columns to remove CD4 + T cells from anti-coagulated whole blood at varying mAb densities and flow rates. We also examined saturation kinetics and Fc-oriention versus random coupling of mAbs to macrobeads. Sepharose 6MB macrobead (250-350 mm) columns proved to be most effective, selectively removing up to 98% of CD4 + T cells from whole blood. Moreover, depletion efficiency and selectivity were retained when these columns were reused after elution of adherent CD4 + cells. These studies indicate that selective depletion of T lymphocyte subsets by whole blood immunoadsorption apheresis using mAb-linked macrobead columns may be feasible on a clinical scale. It is possible that such apheresis techniques could achieve targeted forms of immunosuppression not possible with drugs or radiation.