IntroductionThe renal proximal tubule reabsorbs more than 80% of the filtered bicarbonate load. The principal transport systems (1-3) responsible for transmembrane movement of hydrogen and bicarbonate ions in the proximal tubule cells are the apical Na + /H -exchanger type 3 isoform (NHE3) and the basolateral Na + /HCO 3 -cotransporter (NBC). It might be predicted that systemic and proximal tubule intracellular acid-base homeostasis requires that NHE3 and NBC function in a coordinate fashion. The uniformly parallel regulation of both transporters under a variety of physiologic conditions is consistent with such a hypothesis. NBC activity is enhanced by metabolic acidosis and inhibited by metabolic alkalosis (4). Similarly, chronic hypercapnia increases NBC activity, whereas chronic respiratory alkalosis has the opposite effect (5). NBC activity is also modulated by angiotensin II and parathyroid hormone (6, 7). Under identical conditions, NHE3 activity varies in parallel, suggesting that the activities of the 2 systems may be coordinately regulated (4). The parallel regulation of these transporters has also recently been extended to the level of specific regulatory protein kinases (8, 9). Phosphorylation of brush-border membrane (BBM) and basolateral membrane (BLM) proteins by either protein kinase A (PKA) or calcium calmodulin multifunction protein kinase II (Ca-CAMK II) is inhibitory for both NHE and NBC activities in the respective membranes, whereas protein kinase C (PKC) is stimulatory (8). In the renal proximal tubule, the activities of the basolateral Na + /HCO 3 -cotransporter (NBC) and the apical Na + /H + exchanger (NHE3) uniformly vary in parallel, suggesting that they are coordinately regulated. PKA-mediated inhibition of NHE3 is mediated by a PDZ motif-containing protein, the Na + /H + exchanger regulatory factor (NHE-RF). Given the common inhibition of these transporters after protein kinase A (PKA) activation, we sought to determine whether NHE-RF also plays a role in PKA-regulated NBC activity. Renal cortex immunoblot analysis using anti-peptide antibodies directed against rabbit NHE-RF demonstrated the presence of this regulatory factor in both brush-border membranes (BBMs) and basolateral membranes (BLMs). Using a reconstitution assay, we found that limited trypsin digestion of detergent solubilized rabbit renal BLM preparations resulted in NBC activity that was unaffected by PKA activation. Co-reconstitution of these trypsinized preparations with a recombinant protein corresponding to wild-type rabbit NHE-RF restored the inhibitory effect of PKA on NBC activity in a concentration-dependent manner. NBC activity was inhibited 60% by 10 -8 M NHE-RF; this effect was not observed in the absence of PKA. Reconstitution with heat-denatured NHE-RF also failed to attenuate NBC activity. To establish further a physiologic role for NHE-RF in NBC regulation, the renal epithelial cell line B-SC-1, which lacks detectable endogenous NHE-RF expression, was engineered to express stably an NHE-RF transgene. NHE-...