Hyperglycemia-induced hyperactivity of chemokine CX3CL1 (fractalkine) occurs in the human placenta. Anti-inflammatory/antioxidant activities of resveratrol (3,5,4′-trihydroxy-trans-stilbene) are related to the modulation of chemokine CX3CL1 and its receptor, CX3CR1, signaling pathways. We examined the influence of high glucose (25 mmol/L glucose; HG group; N = 36) on resveratrol-mediated effects on CX3CL1 and TNF-α production by the placental lobule, CX3CR1 expression and contents of CX3CR1, TNF-α receptor 1 (TNFR1), and NF-κB proteins in placental tissue. The placental lobules perfused under normoglycemic conditions formed the control NG group (N = 36). Resveratrol (50 and 100 μM; subgroups B and C) administered into the perfusion fluid lowered the production of both CX3CL1 and TNF-α. The reductions in CX3CL1 levels were more evident in the NG group. CX3CR1 expression was significantly higher in the NG subgroups B and C compared to the HG subgroups B and C (385.2 and 426.5% versus 199.3 and 282.4%, resp.). An increase in CX3CR1 protein content in placental lysates was observed in the NG subgroups B and C. Also, resveratrol significantly decreased NF-κBp65 protein content only in the NG group, not affecting hyperglycemia-elicited TNFR1 upregulation. In conclusion, euglycemia assures optimal effects of resveratrol pertaining to CX3CL1/CX3CR1 signaling in the placenta. Future studies on resveratrol are needed, especially those including maternal-fetal risk assessments.