The widespread growth of the Internet-of-Things (IoT) and its dependence on the license-exempt Industrial, Scientific, and Medical (ISM) bands have made spectrum resources scarce. IoT can nonetheless get advantage from the Cognitive Radio (CR) technology to resolve the spectrum shortage issue. Since in CR networks the unlicensed Secondary Users (SUs) can exploit the white spaces in licensed channels of Primary Users (PUs) opportunistically. CR ad hoc networks are more useful in IoT due to ease of installation, low cost, and less complexity. However, CR ad hoc networks are prone to the rendezvous issue and hidden primary terminal problem. Moreover, the available channels in the CR system are not identical, PUs’ and SUs’ activities can diversify them as well. In this connection, channel selection by SUs is a complex balancing act since the transmission opportunities are space, frequency and time bounded. In this paper, we hence proposed a new Ranked Sense Multiple Access with Collision Avoidance (RSMA/CA) protocol for multichannel CR-based IoT networks. Our proposed RSMA/CA protocol not only resolves the hidden primary terminal problem but also avoids hidden and exposed terminal problems at the same time by mutual spectrum sensing. We suggest a new channel ranking mechanism to rank the available channels based on the long term qualities of the channels, PUs’ return rate, and SUs’ activities and tailor-made the algorithms in an existing scheme to make the rendezvous process more efficient. We analyze the performance of our proposed RSMA/CA in terms of normalized throughput through the Markov chain model and compared with that of the existing scheme. Simulation results show that our RSMA/CA protocol outperforms the existing scheme due to efficient rendezvous and access mechanisms.