To facilitate the transition of quantum effects from the controlled laboratory environment to practical real-world applications, there is a pressing need for scalable platforms. One promising strategy involves integrating thermal vapors with nanostructures designed to manipulate atomic interactions. In this tutorial, we aim to gain deeper insights into this by examining the behavior of thermal vapors that
are confined within nanocavities or waveguides and exposed to near-resonant light. We explore the interactions between atoms in confined dense thermal vapors. Our investigation reveals deviations from the predictions of continuous electrodynamics models, including density-dependent line shifts and broadening effects. In particular, our results demonstrate that by carefully controlling the saturation of single atoms and the interactions among multiple atoms using nanostructures, along with controlling the geometry of the atomic cloud, it becomes possible to manipulate the effective optical nonlinearity of the entire atomic ensemble. This capability renders the hybrid thermal atom-nanophotonic platform a distinctive and valuable one for manipulating the collective effect and achieving substantial optical nonlinearities.