2022
DOI: 10.48550/arxiv.2204.01840
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Renormalized energy between fractional vortices with topologically induced free discontinuities on 2-dimensional Riemannian manifolds

Abstract: On a two-dimensional Riemannian manifold without boundary we consider the variational limit of a family of functionals given by the sum of two terms: a Ginzburg-Landau and a perimeter term. Our scaling allows low-energy states to be described by an order parameter which can have finitely many point singularities (vortex-like defects) of (possibly) fractional-degree connected by line discontinuities (string defects) of finite length. Our main result is a compactness and Γ-convergence theorem which shows how the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?