Ground-state-to-ground-state neutrinoless double-beta (0νββ) decays in nuclei of current experimental interest are revisited. In order to improve the reliability of the nuclear matrix element (NME) calculations for the light Majorana-neutrino mode, the NMEs are calculated by exploiting the newly available data on isovector spindipole (IVSD) J π = 2 − giant resonances. In order to correctly describe the IVSD up to and beyond the giantresonance region, the present computations are performed in extended no-core single-particle model spaces using the spherical version of the proton-neutron quasiparticle random-phase approximation (pnQRPA) with twonucleon interactions based on the Bonn one-boson-exchange G matrix. The appropriate short-range correlations, nucleon form factors, higher-order nucleonic weak currents, and partial restoration of the isospin symmetry are included in the calculations. The results are compared with earlier calculations of Hyvärinen and Suhonen [Phys. Rev. C 91, 024613 (2015)] performed in much smaller single-particle bases without access to the IVSD J π = 2 − giant-resonance data reported here.