Heat treatment is one of the most used methods to preserve food, such as orange juices, which are an excellent source of ascorbic acid. To avoid vitamin C degradation and reduce loss, fast heating is recommended. This work aimed to determine the vitamin C content using the iodometric method and the convective heat transfer coefficient using the method of dimensionless numbers and the experimental method. Time and temperature were controlled throughout the experiment. In pasteurization, the solution was heated to 80 °C, heating lasted 50 minutes and cooling for 42 minutes. The convective heat transfer coefficient was evaluated in two regions of the cylindrical container: near the wall and in the central region. The graphic profile of the curve follows the same trend of the literature. The convective heat transfer coefficient is higher in the region near the wall. As time passes and temperature decreases, the central region tends to equilibrium, and the coefficient becomes more constant. The vitamin C content remained constant before and after pasteurization, so it was observed that the pasteurization did not cause ascorbic acid degradation since the heating step was fast in the heat treatment. As a result of the study, it was noted that studying the thermal behavior in the cooling of orange juice is extremely important to ensure its quality. It is pertinent to mention that in order to avoid this degradation and reduce its loss, it is necessary that in thermal treatments, fast heating is carried out and that the juice has low exposure to air and heat at the time of its preparation.