This work integrates two distinct research areas of parallel and distributed computing, (1) automatic loop parallelization, and (2) component-based Grid programming. The latter includes technologies developed within CoreGRID for simplifying Grid programming: the Grid Component Model (GCM) and Higher-Order Components (HOCs). Components support developing applications on the Grid without taking all the technical details of the particular platform type into account (network communication, heterogeneity, etc.). The GCM enables a hierarchical composition of program pieces and HOCs enable the reuse of component code in the development of new applications by specifying application-specific operations in a program via code parameters. When a programmer is provided, e. g. , with a compute farm HOC, only the independent worker tasks must be described. But, once an application exhibits data or control dependences, the trivial farm is no longer sufficient. Here, the power of loop parallelization tools, like LooPo, comes into play: by embedding LooPo into a HOC, we show that these two technologies in combination facilitate the automatic transformation of a sequential loop nest with complex dependences (supplied by the user as a HOC parameter) into an ordered task graph, which can be processed on the Grid in parallel. This technique can significantly simplify GCM-based systems which combine multiple HOCs and other components. We use an equation system solver based on the successive overrelaxation method (SOR) as our motivating application example and for performance experiments.