Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat hotspots of high space use. Movement modeling showed sharks preferred habitats characterized by strong sea surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge southwest of the Azores. In these main regions, and subareas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently "tracks" oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots, our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.animal telemetry | distribution | conservation | fisheries | predator-prey O ceanic pelagic sharks are iconic top predators with relatively low resilience to exploitation (1-3), yet many tens of millions of individuals are caught each year by high-seas fisheries (2) with significant reductions in catch rates documented for many species (4-6). This level of exploitation is especially problematic because the harvest of oceanic sharks remains largely unregulated (2, 7). For the majority of shark species that make up more than 95% of oceanic shark catches, no international or bilateral harvest limits have been imposed (2, 7). Consequently, analysis indicates that extinction risk in oceanic and coastal sharks and rays is higher than for most other vertebrates (3). Accordingly, there is a critical need and concern for improved management and conservation of oceanic sharks.Management action for oceanic sharks such as catch quotas, size limits, and/or area closures (i.e., marine protected areas, MPAs) is hampered by a paucity of high-quality data on total catches, landings, species identification, catch locations, and the susceptibility of sharks to fisheries (2, 4, 7). In addition, poor recordkeeping, a lack of reporting or deliberate underreporting of pelagic shark catches by the high seas longlining fleet and/or fishing nations (7), contributes to poor data quality that can lead to increased unce...