Repellents are effective personal protective means against outdoor biting mosquitoes. Repellent formulations composed of EOs are finding increased popularity among consumers. In this study, after an initial screening of 11 essential oils (EOs) at the concentration of 33 μg/cm2, five of the most repellent EOs, Perovskia atriplicifolia, Citrus reticulata (fruit peels), C. reticulata (leaves), Mentha longifolia, and Dysphania ambrosioides were further investigated for repellent activity against Aedes aegypti mosquitoes in time span bioassays. When tested at the concentrations of 33 μg/cm2, 165 μg/cm2 and 330 μg/cm2, the EO of P. atriplicifolia showed the longest repellent effect up to 75, 90 and 135 min, respectively, which was followed by C. reticulata (peels) for 60, 90 and 120 min, M. longifolia for 45, 60 and 90 min, and C. reticulata (leaves) for 30, 45 and 75 min. Notably, the EO of P. atriplicifolia tested at the dose of 330 μg/cm2 showed complete protection for 60 min which was similar to the commercial mosquito repellent DEET. Gas chromatographic-mass spectrometric analyses of the EOs revealed camphor (19.7%), limonene (92.7%), sabinene (24.9%), carvone (82.6%), and trans-ascaridole (38.8%) as the major constituents of P. atriplicifolia, C. reticulata (peels), C. reticulata (leaves), M. longifolia, and D. ambrosioides, respectively. The results of the present study could help develop plant-based commercial repellents to protect humans from dengue mosquitoes.