An interesting method of evaluating word representations is by how much they reflect the semantic representations in the human brain. However, most, if not all, previous works only focus on small datasets and a single modality. In this paper, we present the first multimodal framework for evaluating English word representations based on cognitive lexical semantics. Six types of word embeddings are evaluated by fitting them to 15 datasets of eyetracking, EEG and fMRI signals recorded during language processing. To achieve a global score over all evaluation hypotheses, we apply statistical significance testing accounting for the multiple comparisons problem. This framework is easily extensible and available to include other intrinsic and extrinsic evaluation methods. We find strong correlations in the results between cognitive datasets, across recording modalities and to their performance on extrinsic NLP tasks.