It is widely believed that host prion protein (PrP), without nucleic acid, converts itself into an infectious form (PrP-res) that causes transmissible encephalopathies (TSEs), such as human sporadic CJD (sCJD), endemic sheep scrapie, and epidemic BSE. There are many detailed investigations of PrP, but proteomic studies of other proteins in verified infectious TSE particles have not been pursued, even though brain homogenates without PrP retain their complete infectious titer. To define proteins that may be integral to, process, or protect an agent genome, we developed a streamlined, high-yield purification of infectious FU-CJD mouse brain particles with minimal PrP. Proteinase K (PK) abolished all residual particle PrP, but did not reduce infectivity, and viral-size particles lacking PrP were ∼70S (vs. 90-120S without PK). Furthermore, over 1,500 non-PrP proteins were still present and positively identified in high titer FU-CJD particles without detectable PrP by mass spectrometry (LC-MS/MS); 114 of these peptides were linked to viral motifs in the environmental-viral database, and not evident in parallel uninfected controls. Host components were also identified in both PK and non-PK treated particles from FU-CJD mouse brain and human sCJD brain. This abundant cellular data had several surprises, including finding Huntingtin in the sCJD but not normal human brain samples. Similarly, the neural Wiskott-Aldrich sequence and multivesicular and endosome components associated with retromer APP (Alzheimer amyloid) processing were only in sCJD. These cellular findings suggest that new therapies directed at retromer-vesicular trafficking in other neurodegenerative diseases may also counteract late-onset sCJD PrP amyloid pathology.