The porcine epidemic coronavirus (PEDV), tentatively classified as a coronavirus, was adapted to Vero cells and a plaque test developed for infectivity titration, allowing us to test the biological and biophysical properties of the virus. Growth kinetics showed peak titers of 10(5.5) plaque-forming units ml-1 15 h after infection. Filtration experiments and electron microscopy revealed a particle diameter between 100 and 200 nm. The buoyant density of the virus was 1.18. The particle lost its infectivity on treatment with lipid solvents. Virus replication could not be inhibited by 5-iodo-2'-deoxyuridine. PEDV was moderately stable at 50 degrees C, but heat sensitivity was not altered by divalent cations. At 4 degrees C, the virus was stable between pH 5.0 and 9.0, but at 37 degrees C stability was restricted to the pH range 6.5-7.5. Viral infectivity was not impaired by ultrasonication or by multiple freezing and thawing. PEDV was not neutralized by transmissible gastroenteritis virus antiserum. On the basis of the tests carried out, PEDV is a pleomorphic, enveloped RNA virus with a particle diameter of approximately 150 nm and a buoyant density of 1.18. Infectivity depends on the presence of trypsin, and infected cells show a tendency to fuse and to form syncytia. All of these properties, as well as its physicochemical characteristics, allow PEDV to be classified as a coronavirus.