The five known RecQ helicases in humans (RECQ1, BLM, WRN, RECQL4, and RECQ5) have demonstrated roles in diverse genome maintenance mechanisms but their functions in safeguarding the genome from environmental toxicants are poorly understood. Here, we have evaluated a potential role of WRN (mutated in Werner Syndrome) and RECQ1 (the most abundant homolog of WRN) in hydroquinone and benzo[a]pyrene-induced genotoxicity. Silencing of WRN or RECQ1 expression in HeLa cells increased their sensitivity to hydroquinone and benzo[a]pyrene but elicited distinct DNA damage response. RECQ1-depleted cells exhibited increased RPA phosphorylation, Chk1 activation, and DNA double strand breaks as compared to control or WRN-depleted cells following exposure to benzo[a]pyrene treatment. Benzo[a]pyrene-induced double strand breaks in RECQ1-depleted cells were dependent on DNA-PK activity. Notably, loss of WRN in RECQ1-depleted cells ameliorated benzo[a]pyrene toxicity. Collectively, our results provide first indication of non-redundant participation of WRN and RECQ1 in protection from the potentially carcinogenic effects of benzo[a]pyrene and hydroquinone.