Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Borkewehr section near Balve at the southeastern end of the Remscheid-Altena Anticline is currently the best and most complete Devonian/Carboniferous Boundary (DCB) succession of the Rhenish Massif, Germany. Based on a multidisciplinary approach, focusing on refined conodont and ammonoid biostratigraphy, microfacies analyses, sequence stratigraphy, carbon isotopes (Corg and Ccarb), trace element geochemistry, including REE data, and cyclostratigraphy, the section is proposed as a candidate for the new basal Carboniferous GSSP. The succession represents a pelagic “seamount” setting. It spans the upper Famennian to lower Viséan, with a condensed development of most Rhenish lithostratigraphic units and sedimentary sequences. It is the type-section of the oxic and strongly cyclic, fossiliferous Wocklum Limestone and of important uppermost Famennian and basal Carboniferous index species. The First Appearance Datum (FAD) of Protognathodus kockeli s.str., in a phylogenetic succession from the ancestral Pr. semikockeli n. sp., is proposed as future GSSP level. This FAD is sandwiched between many other marker levels for global correlation. Below are, from base to top, the transgressive base of the at least partly anoxic Hangenberg Black Shale (base Lower Hangenberg Crisis Interval), the Hangenberg Regression (onset of siltstones of the basal Middle Crisis Interval), the level of maximum regression, indicated by maximum Zr/Al values, and the initial transgression of the basal Upper Crisis Interval, marked by the re-onset of carbonate deposition. Above follow the locally cryptogenic FAD of Siphonodella (Eosiphonodella) sulcata s.l. at the base of the post-Crisis Interval (Hangenberg Limestone), associated with a conodont biofacies shift, the FAD of Si. (Eo.) bransoni, and, much higher, the sharp Lower Alum Shale Event at the base of the classical middle Tournaisian. The significance of the section is greatly enlarged by its precise correlation with numerous other Rhenish DCB sections that provide important additional data on faunas, geochemistry, geochronological ages, and magnetic susceptibility. The new Borkewehr data suggest changes of weathering intensity, based on Rb/K and K/Al trends, and Milankovitch cyclicity associated with the climate changes of the Hangenberg Crisis. The local conodont extinction rate at the top of the Wocklum Limestone lies at 57 % while there are no survivors in ammonoids, trilobites, or deep-water corals. Positive carbon isotopic shifts of carbonate in the Upper Crisis Interval and of Corg in the Middle Crisis Interval are decoupled, which suggests complex underlying processes that are not yet understood.
The Borkewehr section near Balve at the southeastern end of the Remscheid-Altena Anticline is currently the best and most complete Devonian/Carboniferous Boundary (DCB) succession of the Rhenish Massif, Germany. Based on a multidisciplinary approach, focusing on refined conodont and ammonoid biostratigraphy, microfacies analyses, sequence stratigraphy, carbon isotopes (Corg and Ccarb), trace element geochemistry, including REE data, and cyclostratigraphy, the section is proposed as a candidate for the new basal Carboniferous GSSP. The succession represents a pelagic “seamount” setting. It spans the upper Famennian to lower Viséan, with a condensed development of most Rhenish lithostratigraphic units and sedimentary sequences. It is the type-section of the oxic and strongly cyclic, fossiliferous Wocklum Limestone and of important uppermost Famennian and basal Carboniferous index species. The First Appearance Datum (FAD) of Protognathodus kockeli s.str., in a phylogenetic succession from the ancestral Pr. semikockeli n. sp., is proposed as future GSSP level. This FAD is sandwiched between many other marker levels for global correlation. Below are, from base to top, the transgressive base of the at least partly anoxic Hangenberg Black Shale (base Lower Hangenberg Crisis Interval), the Hangenberg Regression (onset of siltstones of the basal Middle Crisis Interval), the level of maximum regression, indicated by maximum Zr/Al values, and the initial transgression of the basal Upper Crisis Interval, marked by the re-onset of carbonate deposition. Above follow the locally cryptogenic FAD of Siphonodella (Eosiphonodella) sulcata s.l. at the base of the post-Crisis Interval (Hangenberg Limestone), associated with a conodont biofacies shift, the FAD of Si. (Eo.) bransoni, and, much higher, the sharp Lower Alum Shale Event at the base of the classical middle Tournaisian. The significance of the section is greatly enlarged by its precise correlation with numerous other Rhenish DCB sections that provide important additional data on faunas, geochemistry, geochronological ages, and magnetic susceptibility. The new Borkewehr data suggest changes of weathering intensity, based on Rb/K and K/Al trends, and Milankovitch cyclicity associated with the climate changes of the Hangenberg Crisis. The local conodont extinction rate at the top of the Wocklum Limestone lies at 57 % while there are no survivors in ammonoids, trilobites, or deep-water corals. Positive carbon isotopic shifts of carbonate in the Upper Crisis Interval and of Corg in the Middle Crisis Interval are decoupled, which suggests complex underlying processes that are not yet understood.
The Upper Devonian to Mississippian was a very dynamic time in Earth’s history and encompassed substantial changes in widely separated palaeoenvironments. Major evolutionary trends did not occur through a long-lasting interval of ecological stability, instead they took place as recurring global events and/or crises of different magnitude, duration, and intensity. Framed by two of the most devastating time intervals – the Kellwasser and the Hangenberg crises – the Famennian has yielded other 2nd to 5th order events/crises. Many of these smaller scaled events show similarities with specific episodes of the longer-lasting crises and can especially be recognised in weakly tectonised pelagic facies that was present globally in a pan-tropical belt from North America to North Africa, Europe, Asia, and Australia. The search for causes of the Upper Devonian to Mississippian event/crisis sequence has made progress in the last few years. Nevertheless, we are still far from understanding all factors and reasons, which have triggered these environmental changes. The impact of Upper Devonian to Mississippian events/crises on faunal groups, such as ammonoids, has attracted many researches in past decades. Although, living in identical outer shelf settings, the different effects on conodonts have not yet received the attention they deserved in the context of our aim to understand the global environmental hazards of the past. One of the key questions is to understand, which and how environmental change influenced and/or stimulated the evolution of conodonts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.