This is the first in a series of papers in which we measure accurate weak-lensing masses for 51 of the most X-ray luminous galaxy clusters known at redshifts 0.15 z Cl 0.7, in order to calibrate X-ray and other mass proxies for cosmological cluster experiments. The primary aim is to improve the absolute mass calibration of cluster observables, currently the dominant systematic uncertainty for cluster count experiments. Key elements of this work are the rigorous quantification of systematic uncertainties, high quality data reduction and photometric calibration, and the "blind" nature of the analysis to avoid confirmation bias. Our target clusters are drawn from X-ray catalogs based on the ROSAT All-Sky Survey, and provide a versatile calibration sample for many aspects of cluster cosmology. We have acquired widefield, high-quality imaging using the Subaru and CFHT telescopes for all 51 clusters, in at least three bands per cluster. For a subset of 27 clusters, we have data in at least five bands, allowing accurate photometric redshift estimates of lensed galaxies. In this paper, we describe the cluster sample and observations, and detail the processing of the SuprimeCam data to yield high-quality images suitable for robust weak-lensing shape measurements and precision photometry. For each cluster, we present wide-field three-color optical images and maps of the weak-lensing mass distribution, the optical light distribution, and the X-ray emission. These provide insights into the large-scale structure in which the clusters are embedded. We measure the offsets between X-ray flux centroids and the Brightest Cluster Galaxies in the clusters, finding these to be small in general, with a median of 20 kpc. For offsets 100 kpc, weak-lensing mass measurements centered on the Brightest Cluster Galaxies agree well with values determined relative to the X-ray centroids; miscentering is therefore not a significant source of systematic uncertainty for our weak-lensing mass measurements. In accompanying papers we discuss the key aspects of our photometric calibration and photometric redshift measurements (Kelly et al.), and measure cluster masses using two methods, including a novel Bayesian weak-lensing approach that makes full use of the photometric redshift probability distributions for individual background galaxies (Applegate et al.). In subsequent papers, we will incorporate these weak-lensing mass measurements into a self-consistent framework to simultaneously determine cluster scaling relations and cosmological parameters.