There is now considerable evidence to suggest that technical innovations, 3D image-based planning, template guidance, computerized dosimetry analysis and improved quality assurance practice have converged in synergy in modern prostate brachytherapy, which promise to lead to increased tumor control and decreased toxicity. A substantial part of the medical physicist's contribution to this multi-disciplinary modality has a direct impact on the factors that may singly or jointly determine the treatment outcome. It is therefore of paramount importance for the medical physics community to establish a uniform standard of practice for prostate brachytherapy physics, so that the therapeutic potential of the modality can be maximally and consistently realized in the wider healthcare community. A recent survey in the U.S. for prostate brachytherapy revealed alarming variance in the pattern of practice in physics and dosimetry, particularly in regard to dose calculation, seed assay and time/method of postimplant imaging. Because of the large number of start-up programs at this time, it is essential that the roles and responsibilities of the medical physicist be clearly defined, consistent with the pivotal nature of the clinical physics component in assuring the ultimate success of prostate brachytherapy. It was against this background that the Radiation Therapy Committee of the American Association of Physicists in Medicine formed Task Group No. 64, which was charged ͑1͒ to review the current techniques in prostate seed implant brachytherapy, ͑2͒ to summarize the present knowledge in treatment planning, dose specification and reporting, ͑3͒ to recommend practical guidelines for the clinical medical physicist, and ͑4͒ to identify issues for future investigation.