Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Consumption of fresh produce, such as leafy greens, is often encouraged as part of a healthy diet. Hence, indoor facilities for hydroponic production of leafy greens are increasingly being established. However, fresh produce entails a higher risk of microbial foodborne illnesses than processed foods. Listeria monocytogenes is a major source of fresh produce contamination and is among the leading causes of severe foodborne illnesses in the United States, with a 16% mortality rate. Tools for rapid monitoring are needed for pathogens such as L. monocytogenes to prevent outbreaks. In this manuscript, we have demonstrated the feasibility of a multi-aptamer approach for development of label-free aptasensors targeting L. monocytogenes in irrigation water for lettuce hydroponic production. We use screening studies with surface plasmon resonance to rationally develop mixtures of relevant aptamers for targeting L. monocytogenes. Based on this screening, multiple aptamers targeting extracellular structures on intact L. monocytogenes were tethered to platinum-modified laser inscribed graphene electrodes. This is the first report of a L. monocytogenes biosensor based on laser inscribed graphene. We show that mixing multiple aptamers with varying affinity improves the diagnostic performance over one aptamer alone in complex sample matrices (lettuce hydroponic water). Multi-aptamer biosensors showed high accuracy for L. monocytogenes and were at least three times more selective than Escherichia coli (Crooks, K12, O157:H7) with an accuracy of 85%. The limit of detection (10 CFU/10 mL) is based on data which were significantly different after calibration toward L. monocytogenes or E. coli (Crooks) and validated against gold standard molecular analysis (polymerase chain reaction). Rapid screening of pathogens is a global need to meet food safety and water quality regulations. This study shows the importance of sensors targeting more than one bacterial surface structure in complex samples relevant to the food-water nexus.
Consumption of fresh produce, such as leafy greens, is often encouraged as part of a healthy diet. Hence, indoor facilities for hydroponic production of leafy greens are increasingly being established. However, fresh produce entails a higher risk of microbial foodborne illnesses than processed foods. Listeria monocytogenes is a major source of fresh produce contamination and is among the leading causes of severe foodborne illnesses in the United States, with a 16% mortality rate. Tools for rapid monitoring are needed for pathogens such as L. monocytogenes to prevent outbreaks. In this manuscript, we have demonstrated the feasibility of a multi-aptamer approach for development of label-free aptasensors targeting L. monocytogenes in irrigation water for lettuce hydroponic production. We use screening studies with surface plasmon resonance to rationally develop mixtures of relevant aptamers for targeting L. monocytogenes. Based on this screening, multiple aptamers targeting extracellular structures on intact L. monocytogenes were tethered to platinum-modified laser inscribed graphene electrodes. This is the first report of a L. monocytogenes biosensor based on laser inscribed graphene. We show that mixing multiple aptamers with varying affinity improves the diagnostic performance over one aptamer alone in complex sample matrices (lettuce hydroponic water). Multi-aptamer biosensors showed high accuracy for L. monocytogenes and were at least three times more selective than Escherichia coli (Crooks, K12, O157:H7) with an accuracy of 85%. The limit of detection (10 CFU/10 mL) is based on data which were significantly different after calibration toward L. monocytogenes or E. coli (Crooks) and validated against gold standard molecular analysis (polymerase chain reaction). Rapid screening of pathogens is a global need to meet food safety and water quality regulations. This study shows the importance of sensors targeting more than one bacterial surface structure in complex samples relevant to the food-water nexus.
The increasing global population, combined with the impacts of climate change, underscores the urgent need for novel food production systems. Conventional field-based agriculture strains planetary boundaries. Vertical farming (VF) emerges as a promising alternative. It enables precise manipulation of growth factors, including light, temperature, humidity, and nutrient delivery, leading to higher yields and superior crop quality while reducing the environmental impact. Automation and robotics will enhance efficiency, while hydroponic techniques minimize fertilizer usage. Collaborative efforts are essential to address challenges such as energy consumption and technology costs to fully realize the potential of VF. Vertical farming aligns with many of the Global Sustainability Goals, offering a pathway towards food security challenges while fostering sustainability.
This study addresses solar energy applications in protected agriculture, focusing on greenhouses and related technologies. A bibliometric and technical analysis is developed, covering research published between 1976 and 2024, to identify the main trends and challenges in the use of solar energy in controlled environments. The methodology was based on the PRISMA approach, using the Scopus database to retrieve relevant documents. From an initial total of 221 documents, 216 were selected after a filtering and debugging process, ensuring the relevance of the final set. In the analytical phase, the results showed a moderate growth of 3.68% in the annual publication rate, highlighting the impact of research on solar energy’s application to air conditioning and energy efficiency in greenhouses. Most of the studies reviewed feature hybrid systems that combine solar energy with other resources, and we highlight both advances in climate control through artificial intelligence and the implementation of photovoltaic and thermal technologies to improve the energy efficiency of agricultural systems. The results also underline the importance of tomato cultivation in the selected studies, reflecting its global economic impact. The conclusions highlight the need for the further integration of energy storage and desalination technologies, especially in arid regions with high solar irradiation, to ensure the sustainability of greenhouses. It is proposed that future research should address the wider implementation of hybrid systems and advanced climate control technologies, optimizing both the use of energy resources and the performance of crops under cover. In addition, it is recommended that international collaboration be strengthened to address technical and climatic challenges in protected agriculture and to expand the adoption of innovative solutions in different geographical contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.