Radiology report errors occur for many reasons including the use of pre-filled report templates, wrong-word substitution, nonsensical phrases, and missing words. Reports may also contain clinical errors that are not specific to the speech recognition including wrong laterality and genderspecific discrepancies. Our goal was to create a custom algorithm to detect potential gender and laterality mismatch errors and to notify the interpreting radiologists for rapid correction. A JavaScript algorithm was devised to flag gender and laterality mismatch errors by searching the text of the report for keywords and comparing them to parameters within the study's HL7 metadata (i.e., procedure type, patient sex). The error detection algorithm was retrospectively applied to 82, 353 reports 4 months prior to its development and then prospectively to 309,304 reports 15 months after implementation. Flagged reports were reviewed individually by two radiologists for a true gender or laterality error and to determine if the errors were ultimately corrected. There was significant improvement in the number of flagged reports (pre, 198/82,353 [0.24 %]; post, 628/309,304 [0.20 %]; P=0.04) and reports containing confirmed gender or laterality errors (pre, 116/82, 353 [0.014 %]; post, 285/309,304 [0.09 %]; P<0.0001) after implementing our error notification system. The number of flagged reports containing an error that were ultimately corrected improved dramatically after implementing the notification system (pre, 17/116 [15 %]; post, 239/285 [84 %]; P<0.0001). We developed a successful automated tool for detecting and notifying radiologists of potential gender and laterality errors, allowing for rapid report correction and reducing the overall rate of report errors.