2018
DOI: 10.1017/s0004972718000783
|View full text |Cite
|
Sign up to set email alerts
|

Representation Functions on Abelian Groups

Abstract: Let $G$ be a finite abelian group, $A$ a nonempty subset of $G$ and $h\geq 2$ an integer. For $g\in G$, let $R_{A,h}(g)$ denote the number of solutions of the equation $x_{1}+\cdots +x_{h}=g$ with $x_{i}\in A$ for $1\leq i\leq h$. Kiss et al. [‘Groups, partitions and representation functions’, Publ. Math. Debrecen85(3) (2014), 425–433] proved that (a) if $R_{A,h}(g)=R_{G\setminus A,h}(g)$ for all $g\in G$, then $|G|=2|A|$, and (b) if $h$ is even and $|G|=2|A|$, then $R_{A,h}(g)=R_{G\setminus A,h}(g)$ for all $… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?