2008
DOI: 10.1007/s11072-008-0030-8
|View full text |Cite
|
Sign up to set email alerts
|

Representation of a solution of the Cauchy problem for an oscillating system with pure delay

Abstract: We obtain a representation of a solution of the Cauchy problem for a linear inhomogeneous differential equation with constant coefficients and pure delay. We use special matrix functions called a delayed matrix sine and a delayed matrix cosine. They have the form of matrix polynomials of degree dependent on the value of delay.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

4
50
0

Year Published

2013
2013
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 76 publications
(72 citation statements)
references
References 2 publications
4
50
0
Order By: Relevance
“…Motivated by delayed exponential representing a solution of a system of differential or difference equations with one or multiple fixed or variable delays [1][2][3][4][5][6], which has many applications in theory of controllability, asymptotic properties, boundary-value problems, and so forth [3][4][5][7][8][9][10][11][12][13][14][15], we extended representation of a solution of a system of differential equations of second order with delay [1] ( ) = − 2 ( − ) (1) to the case of two delays…”
Section: Introductionmentioning
confidence: 99%
“…Motivated by delayed exponential representing a solution of a system of differential or difference equations with one or multiple fixed or variable delays [1][2][3][4][5][6], which has many applications in theory of controllability, asymptotic properties, boundary-value problems, and so forth [3][4][5][7][8][9][10][11][12][13][14][15], we extended representation of a solution of a system of differential equations of second order with delay [1] ( ) = − 2 ( − ) (1) to the case of two delays…”
Section: Introductionmentioning
confidence: 99%
“…Inspired by the pinner work in Khusainov and Shuklin, more and more researchers develop the similar ideas to deal with new classes of delay differential equations. Khusainov et al introduced a notation of delayed matrix cosine/sine of a polynomial of degree and use this new notation to derive a representation of a solution to a second‐order linear differential equations with pure delay. Diblík et al extend 1‐delay to 2‐delay cases.…”
Section: Introductionmentioning
confidence: 99%
“…Khusainov et al introduced a notation of delayed matrix cosine/sine of a polynomial of degree and use this new notation to derive a representation of a solution to a second‐order linear differential equations with pure delay. Diblík et al extend 1‐delay to 2‐delay cases. Li and Wang introduce a concept of delayed Mittag‐Leffler–type matrix function and seek an explicit formula of solution to a fractional‐order homogeneous linear differential equation with delay.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations