It is widely considered that the beginning of duality theory was Stone's groundbreaking work in the mid 30ies on the dual equivalence of the category Bool of Boolean algebras and Boolean algebra homomorphism and the category Stone of compact Hausdorff zero-dimensional spaces, which became known as Stone spaces, and continuous functions. In 1937 Stone [7] extended this to the dual equivalence of the category DLat of bounded distributive lattices and bounded lattice homomorphisms and the category Spec of what later became known as spectral spaces and spectral maps. Spectral spaces provide a generalization of Stone spaces. Unlike Stone spaces, spectral spaces are not Hausdorff (not even T 1 ), and as a result, are more difficult to work with. In 1970 Priestley [6] described another dual category of DLat by means of special ordered Stone spaces, which became known as Priestley spaces, thus establishing that DLat is also dually equivalent to the category Pries of Priestley spaces and continuous order-preserving maps. Since DLat is dually equivalent to both Spec and Pries, it follows that the categories Spec and Pries are equivalent. In fact, more is true: as shown by Cornish [1] (see also Fleisher [4]), Spec is actually isomorphic to Pries. The advantage of Priestley spaces is that they are easier to work with than spectral spaces. As a result, Priestley's duality became rather popular, and most dualities for distributive lattices with operators have been performed in terms of Priestley spaces. Here we only mention Esakia's duality for Heyting algebras, co-Heyting algebras, and bi-Heyting algebras [2,3], which is a restricted version of Priestley's duality.Another way to represent distributive lattices is by means of bitopological spaces, as demonstrated by Jung and Moshier [5]. In this paper we provide an explicit axiomatization of the class of bitopological spaces obtained this way. We call these spaces pairwise Stone spaces. On the one hand, pairwise Stone spaces provide a natural generalization of Stone spaces as each of the three conditions defining a Stone space naturally generalizes to the bitopological setting: compact becomes pairwise compact, Hausdorff -pairwise Hausdorff, and zero-dimensional -pairwise zerodimensional. On the other hand, pairwise Stone spaces provide a natural medium in moving from Priestley spaces to spectral spaces and backwards, thus Cornish's isomorphism of Pries and Spec can be established more naturally by first showing that Pries is isomorphic to the category PStone of pairwise Stone spaces and bicontinuous maps, and then showing that PStone is isomorphic to Spec. Thirdly, the signature of pairwise Stone spaces naturally carries the symmetry present in Priestley spaces (and distributive lattices), but hidden in spectral spaces. Moreover, the proof that DLat is dually equivalent to PStone is simpler than the existing proofs of the dual equivalence of DLat with Spec and Pries.One of the advantages of Priestley's duality is that many algebraic concepts important for the study of distri...