Abstract:We consider an "orientifold" generalization of Khovanov-Lauda-Rouquier algebras, depending on a quiver with an involution and a framing. Their representation theory is related, via a Schur-Weyl duality type functor, to Kac-Moody quantum symmetric pairs, and, via a categorification theorem, to highest weight modules over an algebra introduced by Enomoto and Kashiwara. Our first main result is a new shuffle realization of these highest weight modules and a combinatorial construction of their PBW and canonical ba… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.