Cellular automata are fully discrete, computational, or dynamical systems, characterised by a local, totally decentralised action. Although extremely simple in structure, they are able to represent arbitrarily complex phenomena. However, due to the very big number of rules in any nontrivial space, finding a local rule that globally unfolds as desired remains a challenging task. In order to help along this direction, here we present the current state of cellular automata templates, a data structure that allows for the representation of sets of cellular automata in a compact manner. The template data structure is defined, along with processes by which interesting templates can be built. In the end, we give an illustrative example showcasing how templates can be used to explore a very large cellular automaton space. Although the idea itself of template has been introduced before, only now its conceptual underpinnings and computational robustness rendered the notion effective for practical use.