Abstract. Temporal variation and phenology of tropical insect communities and the role of environmental factors controlling this variation is poorly understood. A better understanding is needed, for example, to predict the effects of climate change on tropical insect communities and to assess the longterm persistence of tropical communities. We studied seasonal and inter-annual variation in tropical fruitfeeding butterflies by exploiting a unique 137-month abundance time series of .100 species, sampled at 22 locations in the medium altitude montane rain forest of Kibale National Park, western Uganda. Precipitation peaked twice per year, about 20 d after each equinox. Vegetation greenness peaked approximately 33 d later. Species richness and abundance of butterflies peaked about 2 and 3 months, respectively, after the greenness peak. Furthermore, temporal shifts in peaks of butterfly abundances of each 6-month cycle positively correlated with temporal shifts in peaks of vegetation greenness approximately three months before. The butterfly assemblages of ENSO warm phase years differed significantly from assemblages of the other years. To our knowledge this is the first elucidation of bi-annual rhythms in butterfly assemblages. Host plant availability could explain the seasonal cycles in butterfly abundance and species richness, because the 3-month lag observed matches with the egg-to-adult development time in the studied species.