The Mediterranean region with its islands is among the top biodiversity hotspots. It houses numerous freshwater taxa with a high rate of endemism, but is heavily impacted by anthropogenic pressures and global climate change. To conserve biodiversity, reliable data on species and genetic diversity are needed especially for the scarcely known insular freshwater ecosystems. Environmental DNA (eDNA) metabarcoding provides a straight-forward opportunity to assess aquatic biodiversity. Therefore, we conducted the first eDNA metabarcoding study in one stream catchment on Sicily. Specifically, we aimed to (i) investigate spatial diversity patterns of macroinvertebrate communities, (ii) assess seasonal changes (autumn and winter), and (iii) check if dispersal barriers can be identified. Water samples were taken at 27 different sites in two seasons and eDNA metabarcoding was performed using a fragment of the mitochondrial cytochrome c oxidase subunit I gene as a marker. In total, we detected 98 macroinvertebrate species, including 28 taxa potentially new to Sicily. Exact sequence variant and species composition data showed that diversity differed between seasons with less taxa detected in winter. We also detected a dispersal barrier, which had a stronger effect in autumn. Our findings show that eDNA metabarcoding provides valuable information on Sicilian freshwater biodiversity. We therefore encourage its application for understudied regions to better understand the state and dynamics of freshwater biodiversity.