Pregnant gilts (n = 126) were assigned randomly to 12 0.4-ha old world-spar bluestem (Bothriochloa ischaemum) pastures in an outdoor swine (Sus scrofa) production system to examine effects of stocking rates (17.5 or 35 gilts/ha; 7 or 14 gilts per pasture) and dietary N on percentage of ground cover, soil nitrate (NO3-) concentration, and reproductive performance. Treatments were arranged factorially with two stocking rates and two diets equivalent in dietary lysine but different in CP (control = 14.7% CP vs experimental = 12.6% CP) with three pastures per treatment. The experiment was repeated during a second parity with the same animals on the same treatments. Each triangular gestation pasture was subdivided into three regions: 1) near the point or radial center; 2) the middle region that contained a hut and a wallow area; and 3) the outer section where gilts were fed each day. Soil samples (15 cm deep) were taken at the beginning and end of the 306-d study, and soil nitrate-N concentrations were determined. Percentage of ground cover was visually estimated initially and every 30 d thereafter through d 306. Before farrowing, gilts were moved to identical pastures for farrowing and were fed a common 16% CP sorghum (Sorghum bicolor)-based lactation diet beginning at the time of movement to the farrowing pasture. Pregnant gilts were weighed at the time of assignment to treatments in the gestation pastures, when they were moved to farrowing pastures, and at weaning. Production data included total number of pigs born per sow, number of pigs born alive or dead, average birth weight, number of pigs weaned, average weaning weight, and mortality. No differences (P > 0.05) were observed between treatments in soil NO3- concentrations. Percentage of ground cover was decreased (P < 0.01) by the higher stocking rate when grazing was initiated in March/April but recovered rapidly after removal of pigs. More (P < 0.01) pigs were weaned per sow (8.4 vs 7.1+/-0.34) from higher gestation-stocking rate groups. Pig mortality in farrowing was greater (P < 0.05) for lower gestation-stocking rates (25.7% vs. 18.1+/-1.9%). A stocking rate of 35 sows/ha might have increased production potential but was associated with a rapid loss of ground cover during spring.