Ocean warming and acidification may substantially affect the reproduction of keystone species such as Fucus vesiculosus (Phaeophyceae). In four consecutive benthic mesocosm experiments, we compared the reproductive biology and quantified the temporal development of Baltic Sea Fucus fertility under the single and combined impact of elevated seawater temperature and pCO 2 (1100 ppm). In an additional experiment, we investigated the impact of temperature (0-25°C) on the maturation of North Sea F. vesiculosus receptacles. A marked seasonal reproductive cycle of F. vesiculosus became apparent in the course of 1 year. The first appearance of receptacles on vegetative apices and the further development of immature receptacles of F. vesiculosus in autumn were unaffected by warming or elevated pCO 2 . During winter, elevated pCO 2 in both ambient and warmed temperatures increased the proportion of mature receptacles significantly. In spring, warming and, to a lesser extent, elevated pCO 2 accelerated the maturation of receptacles and advanced the release of gametes by up to 2 weeks. Likewise, in the laboratory, maturation and gamete release were accelerated at 15-25°C relative to colder temperatures. In summary, elevated pCO 2 and/or warming do not influence receptacle appearance in autumn, but do accelerate the maturation process during spring, resulting in earlier gamete release. Temperature and, to a much lesser extent, pCO 2 affect the temporal development of Fucus fertility. Thus, rising temperatures will mainly shift or disturb the phenology of F. vesiculosus in spring and summer, which may alter and/or hamper its ecological functions in shallow coastal ecosystems of the Baltic Sea.