Background. Butylphthalide (NBP), approved by the China National Medical Products Administration (NMPA) for the treatment of ischemic stroke (IS), showed pleiotropic potentials against central nervous system (CNS) diseases, including neuroprotection and cognitive deficits improvement. However, the effects and corresponding modes of action were not fully explored. This study was designed to investigate the potential of NBP against IS-associated CNS diseases based on network pharmacology (NP) and molecular docking (MD). Methods. IS was inputted as the index disease to retrieve the “associated diseases” in DisGeNET. Three-database-based IS genes were obtained and integrated (DisGeNET, Malacards, and OMIM). Then, IS-associated genes were identified by combining these genes. Meanwhile, PubMed references and online databases were applied to identify NBP target genes. The IS-related disease-disease association (DDA) network and NBP-disease regulation network were constructed and analyzed in Cytoscape. In silico MD and references were used to validate the binding affinity of NBP with critical targets and the potential of NBP against certain IS-related CNS disease regulation. Results. 175 NBP target genes were obtained, while 312 IS-related disease genes were identified. 36 NBP target genes were predicted to be associated with IS-related CNS diseases, including Alzheimer’s disease (AD), epilepsy, major depressive disorder (MDD), amyotrophic lateral sclerosis (ALS), and dementia. Six target genes (i.e., GRIN1, PTGIS, PTGES, ADRA1A, CDK5, and SULT1E1) indicating disease specificity index (DSI) >0.5 showed certain to good degree binding affinity with NBP, ranging from −9.2 to −6.7 kcal/mol. And the binding modes may be mainly related to hydrogen bonds and hydrophobic “bonds.” Further literature validations inferred that these critical NBP targets had a tight association with AD, epilepsy, ALS, and depression. Conclusions. Our study proposed a drug-target-disease integrated method to predict the drug repurposing potentials to associated diseases by application of NP and MD, which could be an attractive alternative to facilitate the development of CNS disease therapies. NBP may be promising and showed potentials to be repurposed for treatments for AD, epilepsy, ALS, and depression, and further investigations are warranted to be carefully designed and conducted.