The standard method of receptor activation involves the binding of signals or signal‐loaded solute binding proteins (SBPs) to sensor domains. Many sensor histidine kinases (SHKs), which are activated by SBP binding, are encoded adjacent to their corresponding sbp gene. We examined three SBPs of Pseudomonas aeruginosa PAO1, encoded near the genes for the AgtS (PA0600) and AruS (PA4982) SHKs, to determine how common this arrangement is. Ligand screening and microcalorimetric studies revealed that the SBPs PA0602 and PA4985 preferentially bind to GABA (KD = 2.3 and 0.58 μM, respectively), followed by 5‐aminovalerate (KD = 30 and 1.6 μM, respectively) and ethanoldiamine (KD = 2.3 and 0.58 μM, respectively). In contrast, AgtB (PA0604) exclusively recognizes 5‐aminovaleric acid (KD = 2.9 μM). However, microcalorimetric titrations did not show any binding between the AgtS sensor domain and AgtB or PA0602, regardless of the presence of ligands. Similarly, bacterial two‐hybrid assays did not demonstrate an interaction between PA4985 and the AruS sensor domain. Therefore, sbp and shk genes located nearby are not always functionally linked. We previously identified PA0222 as a GABA‐specific SBP. The presence of three SBPs for GABA may be linked to GABA's role as a trigger for P. aeruginosa virulence.