, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of the publication of trade names, trademarks, service marks, or similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. This paper presents the complete original definition of first generation Variable Binary Offset Carrier VBOC1(α) generalized multidimensional geolocation modulation waveforms, to improve the standardization of the United States DoD GPS, European Galileo, Russian GLONASS, Chinese Compass, Indian IRNSS in the L-band (1-2 GHz), and the United Nations International Telecommunications Union (ITU) GNSS or geolocation waveforms in the S-band (2-4 GHz) and C-band (4-8 GHz). In the paper it is argued that the selection of BOC(1,1) on the GPS L1 civil data code and BOC(10,5) (or the military code or M-Code) on both GPS L1 and L2 frequencies is entirely arbitrary because BOC modulation is a special case of for or ; hence, all the current state-of-the-art GNSS waveforms exhibit sub-optimal signal design performance even at the end-user when generalized global objective functions are applied. pure signal design or broad definition of generalized autocorrelation function (ACF) and power spectral density (PSD) offers a unique signal design methodology and provides the necessary framework for ACF pure signal optimization to fill in substantial signal design gaps; hence, improving the GNSS signal design and standardization.