We review the recently improved quantitative rescattering theory for nonsequential double ionization, in which the lowering of threshold due to the presence of electric field at the time of recollision has been taken into account. First, we present the basic theoretical tools which are used in the numerical simulations, especially the quantum theories for elastic scattering of electron as well as the processes of electron impact excitation and electron impact ionization. Then, after a brief discussion about the properties of the returning electron wave packet, we provide the numerical procedures for the simulations of the total double ionization yield, the double-to-single ionization ratio, and the correlated two-electron momentum distribution.