A standardized preparation process is proposed in this study for achieving optimal strength and vegetative properties in vegetated concrete, using Yunnan red soil as a growth substrate for plants. The porosity of vegetated concrete is a crucial factor influencing plant growth, while compressive strength is a significant mechanical property. To assess the strength and porosity of vegetated concrete, different design porosities (22%, 24%, 26%, 28%) and cement-to-aggregate ratios (4, 5, 6, 7) were utilized in the preparation of vegetated concrete samples. The shell-making and static-pressure-molding methods were optimized for specimen preparation. Analyzing the stress–strain full curve characteristics of vegetation-type concrete under different influencing factors, an in-depth investigation into its failure mechanism was conducted. It was determined that the design porosity and cement content significantly impact the concrete’s performance, particularly in terms of 30-day compressive strength and effective porosity. Furthermore, an increase in the fly ash ratio led to an increase in porosity and a decrease in compressive strength, providing a certain guidance for optimizing concrete performance. Comparative analysis through vegetation experiments revealed that black rye grass exhibited favorable growth adaptability compared to other grass species.