The corrosion performance of a newly developed corrosion-resistant rail steel (U68CuCr) was investigated and compared with that of a normally used high-speed rail steel (U71MnG) by neutral salt spray tests, electrochemical tests, X-ray diffraction analyses, and the scanning vibrating electrode technique. It was found that the weight loss and corrosion rate of U68CuCr were lower than those of U71MnG under the same corrosion conditions. In addition, due to the influence of alloying elements (copper and chromium) in U68CuCr, the rust layer was thicker and denser, resulting in a stronger protective effect. Moreover, U68CuCr had a higher corrosion potential in electrochemical tests. Finally, the dynamic corrosion process of U68CuCr in 2.2% NaCl solution mainly followed a lateral extension of corrosion. Therefore, the corrosion resistance of U68CuCr was better than that of U71MnG in the subsea tunnel environment.