Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In order to measure a weak alternating magnetic field, an optically-pumped Rb magnetometer based on pump-probe structure is investigated and demonstrated. The pumping light and probing light propagate along the z axis and x axis, respectively. A constant polarization magnetic field along the pumping light is applied, which not only stabilizes the polarization of Rb atoms but also tunes resonance frequency of Rb atoms. When a weak alternating magnetic field is applied perpendicularly to the constant magnetic field, the magnetic moment will tip off the z axis and rotate around the z axis. And then the polarization plane of probing light is modulated correspondingly. The x component of the magnetic moment can be obtained with a balanced detector. As a result, a signal proportional to weak alternating magnetic field can be obtained.In order to obtain the magnetic response of the magnetometer, we analyze the signal amplitude as a function of polarization magnetic field strength B0 and transverse relaxation time 2 with numerical simulation. The amplitude-frequency response of the magnetometer is determined mainly by two parameters, namely cutoff frequency c=1/2 and resonance frequency 0= B0, where is the gyromagnetic ratio of Rb atom. At low frequency, that is a0 and a 0c2, the magnetometer has a flat response, here a is the frequency of the weak alternating magnetic field. If 0c, the signal amplitude will be large for large 0 or small c. For a given c, the peak response appears at 0=c. In the vicinity of resonance frequency, if c0, a peak will appear and if c 0, no peak occurs. At high frequency, the amplitude will decrease with the increase of a.We verify the above analyses in experiment. A vapor cell with a short transverse relaxation time is used to obtain large frequency response bandwidth. Through optimizing the powers and frequencies of pumping laser and probing laser, high polarization and detection sensitivity of atomic spin can be obtained. Moreover, through choosing an appropriate polarization magnetic field, the magnetometer can be maximally sensitive to the magnetic field to be measured. The experimental results show that the magnetometer has a sensitivity of about m 0.2; pT/HzHz and bandwidth of about 3.5 kHz. It can be used to detect low field magnetic resonance and high frequency abnormal physical phenomena.
We report a rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. The rubidium vapor cell is placed in a five-layer magnetic shield with inner coils that can generate uniform magnetic fields along the direction of pump beam, and the cell is also placed in the center of a Helmholtz coil that can generate an oscillating magnetic field perpendicular to the direction of pump beam. The atoms are optically pumped by circularly polarized pump beam along a constant magnetic field in a period of time, then the pump beam is turned off and a /2 pulse of oscillating magnetic field for 87Rb atoms is applied. After the above process, the individual atomic magnetic moments become phase coherent, resulting in a transverse magnetization vector precessing at the Larmor frequency in the magnetic field. The linearly polarized probing beam is perpendicular to the direction of magnetic field, and can be seen as a superposition of the left and right circularly polarized light. Because of the different absorptions and dispersions of the left and right circularly polarized light by rubidium atoms, the polarization direction of probing beam rotates when probing beam passes through rubidium vapor cell. The rotation of the polarization is subsequently converted into an electric signal through a polarizing beam splitter. Finally, the decay signal related to the transverse magnetization vector is measured. The Larmor frequency proportional to magnetic field is obtained by the Fourier transform of the decay signal. The value of magnetic field is calculated from the formula:B=(2/) f, where and f are the gyromagnetic ratio and Larmor frequency, respectively. In order to measure the magnetic field in a wide range, the tracking lock mode is proposed and tested. The atomic magnetometer can track the magnetic field jump of 1000 nT or 10000 nT, indicating that the atomic magnetometer has strong locking ability and can be easily locked after start-up. The main performances in different magnetic fields are tested. The results show that the measurement range of the atomic magnetometer is from 100 nT to 100000 nT, the extreme sensitivity is 0.2 pT/Hz1/2, and the magnetic field resolution is 0.1 pT. The transverse relaxation times of the transverse magnetization vector in different magnetic fields are obtained, and the relaxation time decreases with the increase of the magnetic field. When the measurement range is from 5000 nT to 100000 nT, the magnetic field sampling rate of the atomic magnetometer can be adjusted in a range from 1 Hz to 1000 Hz. The atomic magnetometer in high sampling rate can measure weak alternating magnetic field at low frequency. This paper provides an important reference for developing the atomic magnetometer with large measurement range, high sensitivity and high sampling rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.