This study presents a new empirical model to estimate the base shear of plane steel structures subjected to earthquake load using a hybrid method integrating genetic programming (GP) and simulated annealing (SA), called GP/SA. The base shear of steel frames was formulated in terms of the number of bays, number of storey, soil type, and situation of braced or unbraced. A classical GP model was developed to benchmark the GP/SA model. The comprehensive database used for the development of the correlations was obtained from finite element analysis. A parametric analysis was carried out to evaluate the sensitivity of the base shear to the variation of the influencing parameters. The GP/SA and classical GP correlations provide a better prediction performance than the widely used UBC code and a neural network-based model found in the literature. The developed correlations may be used as quick checks on solutions developed by deterministic analyses.