2013
DOI: 10.4028/www.scientific.net/amm.389.623
|View full text |Cite
|
Sign up to set email alerts
|

Research of the 3-DOF Helicopter System Based on Adaptive Inverse Control

Abstract: For the flight control problem occurred in 3-DOF Helicopter System, reference adaptive inverse control scheme based on Fuzzy Neural Network model is designed. Firstly, fuzzy inference process of identifier and controller is achieved by using the network structure. Meanwhile, the neural network connection weights are used to express parameters of fuzzy inference. Then, back-propagation algorithm is adopted to amend the network connection weights in order to automatically identify the fuzzy model and adjust its … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 8 publications
0
1
0
1
Order By: Relevance
“…Para as técnicas de AIC, o vetor de pesos da função de transferência inversa da planta é atualizado em função da minimização de um índice de performance por um algoritmo de otimização baseado, por exemplo, no método do gradiente descendente estocástico. Na literatura, para o projeto de AIC, já foram utilizados os seguintes algoritmos adaptativos baseados no método do gradiente descendente estocástico: Least Mean Square (LMS) [11], Normalized Least Mean Square (NLMS) [7] e Affine Projection (AP) [3]. O algoritmo NLMS ao contrário do LMS, soluciona o problema de sensibilidade à dimensão do vetor de entrada pela normalização com a potência desse sinal.…”
Section: Introductionunclassified
“…Para as técnicas de AIC, o vetor de pesos da função de transferência inversa da planta é atualizado em função da minimização de um índice de performance por um algoritmo de otimização baseado, por exemplo, no método do gradiente descendente estocástico. Na literatura, para o projeto de AIC, já foram utilizados os seguintes algoritmos adaptativos baseados no método do gradiente descendente estocástico: Least Mean Square (LMS) [11], Normalized Least Mean Square (NLMS) [7] e Affine Projection (AP) [3]. O algoritmo NLMS ao contrário do LMS, soluciona o problema de sensibilidade à dimensão do vetor de entrada pela normalização com a potência desse sinal.…”
Section: Introductionunclassified
“…The weights vector of a DAIC and IAIC is updated through the minimization of a given performance index described as a function of the error used to update the estimate of the weights vector. Due to this, in the literature some proposals for the DAIC and IAIC design via opti-mization algorithms based on stochastic gradient descent can be found using the following algorithms: Least Mean Square (LMS) (Wang et al, 2013) and Normalized Least Mean Square (NLMS) (Shafiq et al, 2017;Ghazali et al, 2015). In this paper, only the NLMS algorithm is discussed for the DAIC and IAIC design, since this algorithm is less sensitive to variations in the input signal power and performs well on correlated signals (Benesty et al, 2006).…”
Section: Introductionmentioning
confidence: 99%