Research on Automatic Alignment for Corn Harvesting Based on Euclidean Clustering and K-Means Clustering
Bin Zhang,
Hao Xu,
Kunpeng Tian
et al.
Abstract:Aiming to meet the growing need for automated harvesting, an automatic alignment method based on Euclidean clustering and K-means clustering is proposed to address issues of driver fatigue and inaccurate driving in manually operated corn harvesters. Initially, the corn field environment is scanned using LiDAR to obtain point cloud data, which are then subjected to pass-through filtering and statistical filtering to remove noise and non-corn contour points. Subsequently, Euclidean clustering and K-means cluster… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.