Open-cry electronic auctions have revolutionized the landscape of high-value transactions for buying and selling goods. Online platforms such as eBay and Tradera have popularized these auctions due to their global accessibility and convenience. However, these centralized auctioning platforms rely on trust in a central entity to manage and control the processing of bids, e.g., the submission time and validity. The use of blockchain technologies for constructing decentralized systems has gained popularity for their versatility and useful properties toward decentralization. However, blockchain-based open-cry auctions, are sensitive to the order of transactions and deadlines which, in the absence of a governing party, need to be provided in the system design. In this paper, we identify the key properties for the development of decentralized open-cry auctioning systems, including verifiability, transaction immutability, ordering, and time synchronization. Three prominent blockchain platforms, namely, Ethereum, Hyperledger Fabric, and R3 Corda were analyzed in terms of their capabilities to ensure these properties for gap identification. We propose a solution design that addresses these key properties and presents a proof-of-concept (PoC) implementation of such design. Our PoC uses Hyperledger Fabric and mitigates the identified gaps related to the time synchronization of this system by utilizing an external component. During the chaincode execution, the creation and submission of bids initiate requests to the time service API. This API service retrieves trusted timestamps from NTP services to obtain accurate bid times. We then analyzed the system design and implementation in the context of the identified key properties. Lastly, we conducted a performance evaluation of the time service and the PoC system implementation in timesensitive scenarios and assessed its overall performance.